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Abstract. The role of material microstructure in the magnetic anisotropy of real nanostructures has
been studied by the comparison of the magnetic behavior of arrays of amorphous and polycrystalline
CoxSi1−xlines. From the experimental measurements of angular dependences of remanences parallel and
perpendicular to the applied field we determine the angular dispersion of effective local easy axis of
anisotropy. We have proved that amorphous lines have a dispersion of effective anisotropy axis much
smaller than the polycrystalline samples. As a consequence, amorphous lines have a better defined mag-
netic behaviour, pointing the interest of the fabrication of nanostructures made of amorphous materials.

PACS. 75.75.+a Magnetic properties of nanostructures – 75.30.Gw Magnetic anisotropy – 75.50.Kj
Amorphous and quasicrystalline magnetic materials

Co-Si compounds are currently used for applications
such as low resistivity contacts in electronic devices [1,2]
and, thus, magnetic nanostructures based in Co-Si al-
loys present a potential interest since they could be eas-
ily integrated in the existing silicon-based technology.
A well defined magnetic behaviour is a prerequisite for
these applications. And so the interplay between material
microstructure and magnetic element geometrical dimen-
sions, that plays a crucial role in determining the over-
all magnetic behaviour, must be determined. This issue
is very relevant in samples made of polycrystalline ma-
terial, particularly when geometrical dimensions become
comparable to average grain size [3–6]. On the other hand,
suggestions have been made that amorphous magnetic ma-
terial, in which disorder occurs at a much smaller length
scale, could provide a softer and more uniform magnetic
behaviour [7,8].

In this work, we present the comparison of the mag-
netic behaviour of arrays of amorphous and polycrystalline
submicron CoxSi1−x wires. This study is developed in or-
der to analyze the competition between the lithographi-
cally defined shape anisotropy and the easy axis distribu-
tion induced by material microstructure. In this way, we
try to determine which nanostructures are better to obtain
a well defined magnetic behaviour, the amorphous ones or
the polycrystalline ones. Structural transitions from poly-
crystalline to amorphous microstructure can be obtained
in several ways such as by electron beam irradiation on
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a given sample or by changing the alloy composition. In
this case, the simple binary CoxSi1−x system presents a
well defined polycrystalline to amorphous transition for
Co content below x = 0.76, which provides a good way to
test the limitations in the fabrication process due to the
scale of microstructural disorder: for x < 0.76 the films are
amorphous with disorder occurring at the atomic length
scale, whereas for x > 0.76 the films are polycrystalline
with grain size only one order of magnitude below the
width of the wires studied here [9].

In order to quantify the interplay in these materials
between the two kinds of anisotropies (the coherent shape
anisotropy due to patterning and the random anisotropy
term originated by spatial fluctuations of the magne-
tocrystalline anisotropy axis due to material microstruc-
ture), we have developed a method that allows us to deter-
mine the angular dispersion of effective local easy axis of
anisotropy (the easy axis of resultant anisotropy that acts
over each magnetic moment) using only the experimen-
tal measurements of angular dependences of remanences
parallel and perpendicular to the applied field.

Arrays of CoxSi1−x submicron wires have been pre-
pared on Si substrates by electron beam lithography com-
bined with a lift-off technique as reported elsewhere [10].
Two different arrays of lines of similar geometric di-
mensions have been used in this work: array A consists
of Co72Si28 amorphous wires of thickness t = 40 nm,
length l = 250 µm, and width w = 280 nm with inter-
line separation 470 nm and array P consists of Co81Si19
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polycrystalline wires, 40 nm thick, 250 µm long, 320 nm
wide with interline separation 630 nm. In both cases inter-
line distance is larger than wire width, ensuring that mag-
netostatic interactions between wires can be effectively
neglected [11]. Typical grain size for the polycrystalline
samples is about 15 nm, estimated from the width of the
high angle X-ray diffraction peaks. The magnetic behav-
ior of the arrays of lines in fields of up to 3 kOe has been
characterized using a specifically designed Magnetooptical
Transverse Kerr effect (MOTKE) setup [12]. This setup
also allows to vary the angle φH between the applied field
H and the lines direction. In it, a laser beam is focused on
a 300 µm spot on the sample, so that the average magnetic
response of the whole array of lines is obtained, and, by
rotating the optical plane, both the magnetization compo-
nents parallel (Mp) and perpendicular (Mt) to the applied
field direction can be determined.

Thus, the hysteresis loops of the parallel and perpen-
dicular magnetization components were obtained at each
angle φH . From these hysteresis loops we have determined
the polar plots of Mp(H) vs. Mt(H), which provide a
good picture of the evolution of the average magnetiza-
tion vector m = M/Ms as the field is decreased from
saturation (see Fig. 1 for φH = 85◦). In both kinds of
samples, m follows the circle of radius unity indicative
of coherent rotation down to remanence and further be-
yond until the start of the switching process for negative
magnetic field [12]. Figure 2 shows the angular depen-
dence, from 0◦ to 90◦, of the parallel and perpendicu-
lar components of the magnetization vector at remanence
mp(φH) = Mp(H = 0,φH)/Ms and mt(φH) = Mt(H =
0,φH)/Ms for amorphous and polycrystalline arrays, com-
pared with the predictions of the Stoner-Wolfarth model
of coherent rotations under a simple uniaxial anisotropy
term (mp(φH) = cosφH and mt(φH) = sinφH). Actually,
the magnitude of the magnetization vector at remanence
m(φH) = [mp(φH)2 + mt(φH)2]1/2 is 1 ≥ m(φH) ≥ 0.94
for angles 0◦ ≤ φH ≤ 88◦ in the two studied systems.
Therefore, these two results (the prevalence of rotations
down to remanence observed in the polar plots and the
magnitude close to unity of the reduced magnetization re-
manence) rule out the presence of well defined magnetic
domains at remanence, and suggests that there could be,
at most, a magnetization ripple structure around the av-
erage magnetization direction that is responsible for the
observed deviations from the simple Stoner-Wohlfarth be-
havior.

These results can be analyzed considering the stud-
ied lines as two dimensional random anisotropy ferro-
magnets since, due to their dimensions, the magnetiza-
tion lies in the sample plane when the driving field is
applied parallel to the substrate. Each magnetic moment
is assumed to be subject to a local “magnetocrystalline”
anisotropy that has the same strength KC in every point
of the system but the direction of the local easy axis
fluctuates from one magnetic moment to another one. In
general, KC is not the true microscopic “magnetocrys-
talline” anisotropy Kmicro acting on each magnetic atom
but rather its average value 〈Kmicro〉 over a magnetic cor-

Fig. 1. Normalized polar plots of Mp(H)/Ms vs. Mt(H)/Ms

at φH = 85◦ for: (a) amorphous lines; (b) polycrystalline lines.
The position of magnetization at remanence is also indicated.

Fig. 2. Angular dependence of parallel and transverse rema-
nences mp(φH) = Mp(H = 0,φH)/Ms and mt(φH) = Mt(H =
0,φH)/Ms: (a) mp(φH) for amorphous arrays; (b) mp(φH) for
polycrystalline arrays; (c) mt(φH) for amorphous arrays; (d)
mt(φH) for polycrystalline arrays. (•) and (o) are the exper-
imental results. Dashed lines correspond to the cos(φH) and
sin(φH) dependences expected for a Stoner-Wohlfarth model
with uniaxial anisotropy. Solid lines are the theoretical fits ob-
tained from equations (3) and (4) using the parameters indi-
cated in the text.

relation length due to the coupling between the individual
moments. That is, KC = 〈Kmicro〉 ≈ Kmicro/N1/2, being
Kmicro the magnetocrystalline anisotropy of each individ-
ual grain or atom and N the number of grains within
each correlated region [13]. The angular distribution of
the local easy axis can be characterized by a certain nor-
malized function P (φC), where φC is the angle between
the local easy axis and the lines direction, which is taken
as the axis of reference for the angles appearing in this
work. Due to the shape of the lines, there is a coherent
anisotropy (of strength K0) superposed to the random lo-
cal “magnetocrystalline” anisotropy. The competitive ef-
fects of the shape anisotropy, the random magnetocrys-
talline anisotropy, and the exchange and magnetostatic
interactions lead to a magnetization ripple structure at
remanence [5,12]. This allows us to approximate the inter-
actions between magnetic moments through a mean field
λM, where λ is a phenomenological coupling parameter,
and M the average magnetization. If the anisotropy field
is Hk ≡ 2K0/MS, we can define the reduced magnitudes,
m ≡ M/MS, and ε ≡ λMS/Hk, in terms of which the
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reduced total energy density at remanence becomes

e = − ε m cos(φ− φM )−1
2

δC cos2(φC − φ)− 1
2

cos2(φ).

(1)
Here m is given by m = 〈cos(φ-φM )〉, being φ the equi-
librium position of the local magnetization, φM the aver-
age magnetization direction, and δC = KC/K0. Parallel
and transverse remanences are mp(φH) = 〈cos(φ–φH)〉
and mt(φH) = 〈sin(φ–φH)〉 where the average values
must be carried out over all easy axis directions satisfying
|φ − φM| ≤ π/2 because we are considering the case of
twofold local easy axis of anisotropy. From the condition
for the stable equilibrium of magnetization at remanence
and considering that φ, for any φC, is very close to φM we
find from equation (1) that

φ ≈ φM +
δC

2 εm
sin [2 (φC − φM )] − 1

2εmr
sin (2φM ) .

(2)
Taking into account equation (2), parallel and transverse
remanences become

mp(φH) =
∫ φM+(π/2)

φM−(π/2)

cos

{
φM − φH +

δC

2εm

× sin [2 (φC − φM )] − 1
2εm

sin (2φM )

}
P (φC)dφC

(3)

mt(φH) =
∫ φM+(π/2)

φM−(π/2)

sin

{
φM − φH +

δC

2εm

× sin [2 (φC − φM )] − 1
2εm

sin (2φM )

}
P (φC)dφC .

(4)

We would like to emphasize that in equations (3) and
(4), m = m(φH) and φM = φM(φH) can be obtained
using only mp(φH) and mt(φH) measurements, because
m(φH) = [mp(φH)2 + mt(φH)2]1/2 and φM (φH) = φH +
arctan [mt(φH)/mp(φH)].

The experimental data points (φH , mp(φH)) and (φH ,
mt(φH)) of Figure 2 must be fitted to equations (3)
and (4) which have three adjustable parameters: ε, δC

and σ (where σ characterizes the disorder of distribu-
tion P (φC)). The problem has been solved numerically us-
ing a non-linear least square algorithm [14] and assuming
that P (φC) is a Gaussian distribution. The best numeri-
cal fit was obtained with the following parameters: ε = 5,
δC = 0.05, and σ = 40◦ for amorphous lines; ε = 10,
δC = 0.2, and σ = 30◦ for polycrystalline lines (see solid
lines in Fig. 2). As it can be seen, a good agreement be-
tween experimental and theoretical results is found.

The angular distribution of anisotropy axis for the
“magnetocrystalline” anisotropy term P (φC) obtained
from the fit is shown in Figures 3a and 3b for the amor-
phous and polycrystalline lines respectively. For both

Fig. 3. Angular distribution of local anisotropy easy axes for
the “magnetocrystalline” anisotropy term P (φC): (a) amor-
phous array; (b) polycrystalline array.

kinds of materials the “magnetocrystalline” local easy
axes are distributed in a rather wide angular range (σ =
30◦–40◦) as expected from a random anisotropy model.
The magnitude of the “magnetocrystalline” anisotropy
KC can be obtained from the deduced δC values and
the coherent shape anisotropy of the studied lines K0 =
1
2 (Na − Nb)M2

S (where Na = 4πt/(w + t) and Nb = 0 are
the demagnetizing factors along the width and the length
of the lines [15]). Taking into account the lines dimen-
sions for each array, and that we have determined exper-
imentally in reference continuous films MS(Co72Si28) =
320 emu/cm3 and MS(Co81Si19) = 700 emu/cm3, we ob-
tain K0 = 8.0× 104 erg/cm3 and K0 = 3.4× 105 erg/cm3

for arrays A and P respectively. From this we find that
KC ≈ 4.0 × 103 erg/cm3 for amorphous lines and KC ≈
6.8×104 erg/cm3 for polycrystalline ones. It is interesting
to stress that the combined effect of these anisotropies, K0

and KC, of different physical origin is that an only effec-
tive uniaxial anisotropy K acts on each magnetic moment.
Both the strength of this effective local anisotropy K and
its direction φK depend on the strength of K0 and KC,
and the angle φC between the easy axis of the “magne-
tocrystalline” anisotropy and the line direction. Since we
have already deduced P (φC) and the ratio δC = KC/K0,
and taking into account Crowther’s calculations [16] about
uniaxial anisotropies composition, the angular distribu-
tion of effective local easy axis P (φK) that act on each
magnetic moment can be easily obtained and has been
plotted in Figures 4a and 4b for the amorphous and poly-
crystalline lines respectively. In spite of the similar width
in the angular distribution P (φC) for both materials, the
microstructural disorder produces a much more impor-
tant widening on the distribution function of effective local
anisotropy axes P (φK) for the polycrystalline than for the
amorphous lines (the half width is ∆φK = 6◦ for the poly-
crystalline array compared to ∆φK = 1.5◦ for the amor-
phous array). This difference is related with the magni-
tude of the local term KC given by the numerical fit and
highlights the convenience of working in materials with
low anisotropy and small length scale for spatial fluctu-
ations of the anisotropy axis, such as amorphous alloys,
in order to obtain a well defined magnetic behaviour in
nanostructures.
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Fig. 4. Angular distribution of local effective anisotropy easy
axes P (φK): (a) amorphous array; (b) polycrystalline array.

In summary, the role of microstructural disorder in
the magnetic behavior and anisotropy of real nanostruc-
tures has been analyzed by the comparison of arrays of
amorphous and polycrystalline CoxSi1−x lines. There are
two different anisotropy contributions: the coherent shape
anisotropy due to patterning and the random anisotropy
term originated by spatial fluctuations of the magne-
tocrystalline anisotropy axis due to material microstruc-
ture. A unique anisotropy results from the joint effect
of both anisotropies. Its angular dispersion has been de-
termined from a mean-field approximation and from the
angular dependence measurements of parallel and per-
pendicular remanences. We have proved that amorphous
lines have an angular dispersion of effective anisotropy
axis much smaller than the polycrystalline samples. As a
consequence, amorphous lines have a better defined mag-
netic behaviour, pointing the interest of the fabrication of
nanostructures made of amorphous materials.

Work supported by Spanish CICYT under grant MAT2002-
04543-C02-01 and HF/2002-0170.
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